New Error Detecting Codes for the Design of Hardware Resistant to Strong Fault Injection Attacks

نویسندگان

  • Zhen Wang
  • Mark Karpovsky
چکیده

Cryptographic devices suffer from fault injection attacks. The security of crypto-systems protected by traditional error detecting codes rely on the assumption that the information bits and the error patterns are not both controllable by the attacker. For applications where the assumption is not valid, the security of systems protected by traditional error detecting codes can be easily compromised. In this paper, we present constructions for algebraic manipulation detection (AMD) codes based on the nonlinear encoding functions. For a (k,m, r) AMD code, a message contains three parts: k-bit information data y, m-bit random data x and r-bit redundancy f(y, x). For any error e and information y, the fraction of x that masks the error e is less than 1. In this paper we describe lower and upper bounds on AMD codes and show that the presented constructions can generate optimal or close to optimal AMD codes in many cases. We presented efficient encoding and decoding methods for AMD codes minimizing the number of multipliers using the multivariate Horner scheme. The proposed codes can provide a guaranteed high error detecting probability even if both the information bits of the code and the non-zero error patterns are controllable by an attacker. These codes can be used for design of secure multipliers, secure memories or secure hardware implementing cryptography algorithms resistant to fault injection attacks. Keywords-Error Detecting Codes, Nonlinear Codes, Secure Hardware, Fault Injection Attacks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

Robust Codes for Fault Attack Resistant Cryptographic Hardware

Hardware implementations of cryptographic algorithms are vulnerable to fault analysis attacks. To detect these attacks we propose an architecture based on robust nonlinear systematic (n,k)-error-detecting codes. These nonlinear codes offer advantages over linear codes since they are capable of providing uniform error detecting coverage independently of the error distributions. They make no assu...

متن کامل

Differential Fault Analysis Attack Resistant Architectures for the Advanced Encryption Standard

We present two architectures for protecting a hardware implementation of AES against side-channel attacks known as Differential Fault Analysis attacks. The first architecture, which is efficient for faults of higher multiplicity, partitions the design into linear (XOR gates only) and nonlinear blocks and uses different protection schemes for these blocks. We protect the linear blocks with linea...

متن کامل

Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection

Traditional hardware error detection methods based on linear codes make assumptions about the typical or expected errors and faults and concentrate the detection power towards the expected errors and faults. These traditional methods are not optimal for the protection of hardware implementations of cryptographic hardware against fault attacks. An adversary performing a fault-based attack can be...

متن کامل

Secure NAND Flash Architecture Resilient to Strong Fault-Injection Attacks Using Algebraic Manipulation Detection Code

Multi-level cell (MLC) NAND flash memories are widely used because of their high data transfer rate, large storage density and long mechanical durability. Linear error correcting codes (ECC) such as Reed-Solomon (RS) codes and Bose-Chaudhuri-Hocquenghem (BCH) codes are often used for error correction. Although linear codes can efficiently detect and correct random errors, they are not sufficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012